Optimal allocation of leaf epidermal area for gas exchange
نویسندگان
چکیده
A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes.
منابع مشابه
How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth?
Conventional wisdom holds that the ratio of leaf area to sapwood area (L/S) should decline during height (H) growth to maintain hydraulic homeostasis and prevent stomatal conductance (g(s)) from declining. We contend that L/S should increase with H based on a numerical simulation, a mathematical analysis and a conceptual argument: (1) numerical simulation--a tree growth model, DESPOT (Deducing ...
متن کاملSelection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa.
Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation...
متن کاملOptimality and nitrogen allocation in a tree canopy.
Physical and functional properties of foliage were measured at a variety of microsites in a broad-leaved Nothofagus fusca (Hook. f.) Ørst. canopy. The light climate of the foliage at these sites was monitored for 39 days in the late spring and early summer with in situ sensors. Foliage nitrogen content (N), mean leaf angle, and gas exchange characteristics were all correlated with the amount of...
متن کاملIn Situ Measurement of Epidermal Cell Turgor, Leaf Water Potential, and Gas Exchange in Tradescantia virginiana L.
A combined system has been developed in which epidermal cell turgor, leaf water potential, and gas exchange were determined for transpiring leaves of Tradescantia virginiana L. Uniform and stable values of turgor were observed in epidermal cells (stomatal complex cells were not studied) under stable environmental conditions for both upper and lower epidermises. The changes in epidermal cell tur...
متن کاملAn empirical model that uses light attenuation and plant nitrogen status to predict within-canopy nitrogen distribution and upscale photosynthesis from leaf to whole canopy
Modelling the spatial and temporal distribution of leaf nitrogen (N) is central to specify photosynthetic parameters and simulate canopy photosynthesis. Leaf photosynthetic parameters depend on both local light availability and whole-plant N status. The interaction between these two levels of integration has generally been modelled by assuming optimal canopy functioning, which is not supported ...
متن کامل